AVN Members : Dr. Sarah McFarlane

My lab studies how extrinsic signals determine cell position during nervous system development, using the developing visual system of zebrafish and the frog Xenopus laevis as our models. We use zebrafish to understand how extrinsic signals control progenitor cell movements to establish spatial domains within the developing eye vesicle. We also study how these spatial domains are refined and maintained through development, and how they influence the entry of non-neural cells that become the vasculature of the eye. We are also studying how the retinal pigment epithelium (RPE) is specified during development, how once specified the RPE domain is maintained separately from the neural retinal, and the nature of the extrinsic signals that control the migration of the RPE cells over the eye vesicle. Finally, we use Xenopus to understand the molecular mechanisms that control circuit development in the retina and visual system, including determining the molecules that guide developing retinal axons and their dendrites, what regulates the expression of guidance molecules, and how coordinated activation of all components of a developing neural circuit are achieved. The lab has technical expertise in the generation of zebrafish mutants, transgenics, confocal imaging of cells in live embryo, in vivo gene transfer, cell culture of human RPE and Xenopus kidney cell lines.